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Abstract 

Periodontal disease is an inflammatory disease caused predominantly by bacteria. Its prevalence is high 

among adults, especially mild and moderate forms. Periodontal disease is considered the second most 

widespread oral disease after dental caries. Periodontal prevalence can be affected by age, gender, 

ethnicity, and socioeconomic status. Furthermore, factors such as smoking, obesity, diabetes mellitus, 

and metabolic syndrome contribute strongly to periodontal disease. Neurogenic inflammation is 

involved in a variety of systemic diseases, including periodontitis. However, the role of 

neuroinflammation in periodontal diseases is unclear. Thus, this review aims to discuss the mechanistic 

pathways and therapeutic implications of neurogenic inflammation in periodontal diseases. Multiple 

studies found an association between neuropeptides and the development of periodontal diseases, as 

they found increased levels of neuropeptides in tissues and plasma of diseased patients. Studies also 

found a link between periodontal diseases and neurodegenerative diseases, including multiple sclerosis, 

Parkinson’s disease, and Alzheimer’s disease. Understanding these interactions may provide new 

therapeutic targets and improve both oral and systemic health outcomes. 
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Introduction 

Periodontal disease is an inflammatory condition, 

primarily caused by bacterial plaque, and leads to 

the destruction of periodontal tissues. It is a leading 

cause of tooth loss and has been associated with 

multiple systemic conditions in both developing and 

developed countries. Periodontal disease is highly 

prevalent in adults globally, particularly its mild and 

moderate forms, with prevalence rates around 50% 

(1). The incidence of severe forms of this disease 

increases especially between the third and fourth 

decades of life, with a prevalence around 10% 

globally (2). The prevalence of periodontal disease 

rises with age, and in the United States, 70.1% of 

adults aged 65 and older are affected by some form 

of the condition, making it the second most 

widespread oral disease after dental caries (3).  

Ethnicity, gender, and socioeconomic status can 

also affect the prevalence of periodontitis. 

Furthermore, factors such as smoking, obesity, 

diabetes mellitus, and metabolic syndrome 

contribute strongly to periodontal disease (4). The 

major periodontitis pathogens include 

Porphyromonas gingivalis, Aggregatibacter 

actinomycetemcomitans, Treponema denticola, 

Tannerella forsythia, Prevotella intermedia, and 

Fusobacterium nucleatum (5).  

Although bacteria are an established cause of 

periodontitis, they alone do not fully lead to the 

advanced destruction of periodontal tissues. An 

important yet often overlooked aspect of 

periodontitis is its neurogenic component (6). The 

involvement of neurogenic inflammation in a 

variety of systemic diseases is well documented, and 

its role in periodontitis has also been suggested. The 

concept of neurogenic inflammation was first 

introduced by Jancsó and Szolcsányi in 1967 (7).  

Although neurogenic inflammation is considered a 

protective mechanism, excessive or chronic 

activation may result in tissue damage instead of 

repair. When chemical irritants interact with 

receptors on sensory nerves, they can trigger the 

release of neuropeptides such as Substance P (SP), 

leading to neurogenic inflammation (8). Neurons 

produce these bioactive molecules, known as 

neuropeptides or peptide neurotransmitters, which 

exert their biological effects through extracellular 

receptors on target cells (9). However, the role of 

neurogenic inflammation in periodontal diseases 

and its contribution to neurodegenerative diseases is 

unclear. This review aims to explore current 

evidence focused on neurogenic inflammation in 

periodontal diseases, highlighting its contribution to 

neurodegenerative diseases. 

Methods 

A comprehensive literature search was conducted in 

Medline (via PubMed), Scopus, and Web of Science 

databases up to June 16, 2025. Medical Subject 

Headings (MeSH) and relevant free-text keywords 

were used to identify synonyms. Boolean operators 

(AND, OR) were applied to combine search terms 

in alignment with guidance from the Cochrane 

Handbook for Systematic Reviews of Interventions. 

Key search terms included: “Periodontal Disease” 

OR “Periodontitis” AND “Neurogenic 

Inflammation” OR “Neuroinflammation” OR 

“Neuropeptides”. Summaries and duplicates of the 

found studies were exported and removed by 

EndNote X8. Any study that discusses the role of 

neurogenic inflammation in periodontal diseases 

and is published in peer-reviewed journals was 

included. All languages are included. Full-text 

articles, case series, and abstracts with related topics 

are included. Case reports, comments, and letters 

were excluded.  

Discussion 

Role of Neurogenic Inflammation in Periodontal 

Disease 

The pathogenesis and causative mechanisms of 

periodontal diseases are multifactorial, with 

neurologic inflammation playing a key role in these 

mechanisms. Multiple studies found an association 

between neuropeptides and the development of 

periodontal diseases, as they found increased levels 

of neuropeptides in tissues and plasma of diseased 

patients. 

Neuroinflammation is regulated by the innate 

immune system and includes two forms: acute and 

chronic (3). The acute form is characterized by a 

transient increase of inflammatory markers, while 
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the chronic form involves persistent, low-grade 

inflammation and delayed resolution. Chronic 

neuroinflammation leads to prolonged cytokine 

release, especially from glial cells, which leads to 

neuronal damage and cell death (3). Unresolved 

systemic inflammatory stimulation can lead to 

chronic microglial activation, resulting in microglial 

hypersensitivity to subsequent stimuli (10).  

Toll-like receptor 4 is a part of a key pathway that, 

when activated by lipopolysaccharide (LPS), 

stimulates proinflammatory signaling in astrocytes 

and microglia (11). These cascades are significant in 

periodontal diseases, since they lead to an increase 

in systemic inflammatory markers, such as C-

reactive protein (CRP) (12). Thus, sustained 

systemic inflammation in periodontal disease may 

play a role in initiating or exacerbating 

neuroinflammatory processes. 

A previous study found an association between 

elevated levels of specific periodontal pathogens 

and increased serum proinflammatory cytokines. 

For example, the study reported an association 

between Aggregatibacter actinomycetemcomitans 

and high serum IFN-γ and between Porphyromonas 

gingivalis and high TNF-α levels (13). Therefore, 

different bacterial species can stimulate systemic 

immune systems by activating different lymphocyte 

populations, given that each immune cell type 

produces distinct cytokines (3). 

Furthermore, the central nervous system (CNS) can 

be significantly affected by prolonged exposure to 

inflammatory agents, since they can disrupt the 

blood-brain barrier (BBB). This disruption of the 

BBB allows microbial components and cytokines to 

reach the brain via the bloodstream or cranial nerves 

(3). For instance, proinflammatory cytokines from 

peripheral inflammation may stimulate the vagus 

nerve that transmits the inflammatory signal to the 

brain (14). Leptomeningeal cells, located within the 

meninges, further contribute to signal transduction 

from peripheral immune cells like macrophages to 

the brain’s microglia (15). Notably, microbial 

invasion and neurogenic inflammation can lead to 

neurodegenerative disorders, as multiple 

postmortem analyses have detected DNA from 

periodontal pathogens such as P. gingivalis and 

Treponema denticola in the brains of Alzheimer’s 

disease (AD) patients (16, 17).  

Multiple previous animal studies supported these 

findings. A study injected LPS peripherally into 

mice, resulting in systemic inflammation and 

inducing the expression of TNF-α and IL-1β in the 

brain. More intense neuroinflammatory responses 

and behavioral impairments were observed in older 

animals, mirroring cognitive declines observed in 

the elderly experiencing systemic infections (18). 

Another study induced periodontitis in mice using 

ligature placement and reported increased 

proinflammatory cytokines both in gingival tissue 

and the brain (19), suggesting that oral inflammation 

can induce a neuroinflammatory response. 

Furthermore, even in the absence of live pathogens, 

ligature-induced periodontitis in wild-type mice 

altered microglial activation and brain cytokine 

profiles. In 5×FAD mice, a transgenic Alzheimer’s 

model, this model led to a significant reduction in 

plaque-associated microglia, further implying that 

periodontitis-induced inflammation affects AD 

pathology (20). 

Gut microbiome disruption is another emerging 

mechanism linking periodontitis and neurogenic 

inflammation (3). Oral microbes were observed in 

fecal samples, suggesting an oral-gut translocation. 

This translocation can impair the gut-brain axis, 

which is a complex system through which the gut 

microbiota regulates neurological function via 

metabolic, immune, and hormonal pathways. An 

increase in BBB permeability may occur due to the 

disruption of gut hemostasis, which allows the entry 

of microbial metabolites or inflammatory signals to 

the CNS (21). 

A study suggested a theory that sporadic 

Parkinson’s disease (PD) may arise in the nasal 

cavity or gut, with pathology progressing along the 

vagal or olfactory nerves. This theory follows the 

“leaky gut–leaky brain” hypothesis, which is that 

the increase in intestinal permeability allows the 

microbial components to reach the brain and results 

in neurodegeneration. These effects may result from 

the modulation of systemic immune and 
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biochemical pathways or through direct migration 

across the cerebrospinal fluid or BBB barriers (21). 

Therefore, periodontal disease is associated with 

chronic microbial dysbiosis, which leads to 

cognitive impairment via the TLR4/MyD88/NF-κB 

signaling pathway. This supports the model of an 

oral–gut–brain axis (22). A study by Chi et al. 

supported these findings as they showed that oral 

administration of P. gingivalis in mice resulted in 

both gut dysbiosis and cognitive impairment (23). 

Furthermore, the study demonstrated that P. 

gingivalis disrupted the glymphatic system, which 

is a crucial waste-clearance pathway in the brain, 

thus decreasing its ability to remove metabolic 

byproducts such as amyloid-beta, a key hallmark of 

AD. Another systematic review evaluated the 

impact of neurologic inflammation on periodontal 

diseases (6). In patients with gingivitis and 

periodontal-affected sites, tissue samples showed 

the presence of neurochemical markers, suggesting 

the contribution of neuropeptides in the 

etiopathogenesis of periodontal diseases (24).  

Inflammatory Neuropeptides in Periodontal 

Disease 

Multiple studies explored the link between 

neuropeptides and periodontal diseases; an 

overview of these neuropeptides is shown in Table 

1. These studies found that SP was higher in the 

periodontitis sites than in healthy sites (25-27). 

Furthermore, studies reported that SP was positively 

associated with neurokinin A (NKA) clinical 

measurement, indicating their impact on periodontal 

disease severity. SP, among other pro-inflammatory 

neuropeptides, can induce lymphocyte infiltration 

(28) and stimulate interleukin-2 production (29). SP 

and NKA are resistant to degradation by 

carboxypeptidase, which allows their levels to 

remain elevated in periodontitis (25). Notably, a 

study reported a significant increase in NKA-like 

immunoreactivity and SP-like immunoreactivity in 

periodontitis and gingivitis sites compared to 

healthy sites (27). 

Various factors cause the elevation of SP levels in 

periodontal diseases. One contributing mechanism 

is SP's ability to enhance osteoclast activity, thereby 

promoting bone resorption (30). The detection of 

SP-like immunoreactivity before neutrophil 

infiltration indicates its role in the early phases of 

inflammation (31). SP may facilitate leukocyte 

infiltration through various pathways, a critical 

component of the inflammatory process (26). 

Clinical studies have also reported a significant 

decrease in pro-inflammatory neuropeptides like SP 

following periodontal treatment (26). 

Calcitonin gene-related peptide (CGRP) is another 

outcome parameter measured to assess the influence 

of neurologic inflammation on periodontal disease. 

Studies showed that CGRP levels are higher in 

healthy tissues than in periodontal-affected tissues 

(25). This can be attributed to the CGRP’s inhibitory 

effect on lymphocytic proliferation (32) and IL-2 

production (33), resulting in inhibition of 

osteoclastic bone resorption and stimulation of 

osteogenesis. This result can also be explained by 

the rapid breakdown of CGRP due to 

carboxypeptidase activity in the gingival crevicular 

fluid obtained from periodontitis sites. This is 

important because this neuropeptide has the ability 

to suppress osteoclastic bone resorption and 

promote osteogenesis (25). However, two previous 

studies noticed no clear differences between SP and 

CGRP levels in periodontitis-affected sites and 

clinically healthy sites (24, 34).  

Vasoactive intestinal polypeptide (VIP) is a 

macrophage deactivating factor that impedes the 

excessive production of pro-inflammatory factors 

(35) and inhibits the production of LPS-induced 

tumor necrosis factor-alpha, IL-12, and IL-6 in 

activated macrophages (36). Studies reported that 

VIP levels were reduced after the induction of 

periodontal treatment. However, VIP levels may 

increase due to its anti-inflammatory role (as seen in 

clinically healthy sites).  

This increase in VIP periodontitis sites may be 

caused by the LPS stimulation effect on the 

production and secretion of VIP in vitro (37). Thus, 

it appears that SP and VIP have antagonistic effects 

on periodontal inflammation. Maintaining a balance 

between pro- and anti-inflammatory neuropeptides 

is a crucial aspect of the host immune response.
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Table 1. Overview of Neuropeptides Involved in Periodontal Disease 

Neuropeptide Inflammatory role Functions Location 

Substance P (SP) Pro-inflammatory Vasodilator 

Peripheral nerves, including enteric 

neurons and capsaicin-sensitive 

primary afferent neurons. 

Calcitonin gene-related 

peptide (CGRP) 
Anti-inflammatory Vasodilator 

Distributed throughout the central and 

peripheral nervous systems. 

Neurokinin-A (NKA) Pro-inflammatory 

Increases vasodilatation, 

microvascular permeability, 

and plasma extravasation. 

Peripheral nerves, including enteric 

neurons and capsaicin-sensitive 

primary afferent neurons. 

Neuropeptide Y (NPY) Pro-inflammatory Vasoconstrictor 
Distributed throughout the central and 

peripheral nervous systems. 

Vasoactive intestinal 

polypeptide (VIP) 
Anti-inflammatory 

An immunomodulatory 

peptide that regulates the 

production of pro- and anti-

inflammatory mediators, 

relaxes smooth muscle, and 

induces salivary secretion. 

In the central and peripheral nervous 

systems. 

 

Periodontitis and Neurodegenerative Diseases 

Recently, multiple studies have demonstrated a link 

between periodontal diseases and 

neurodegenerative diseases, including multiple 

sclerosis (MS), Parkinson’s disease, and 

Alzheimer’s disease. This link is regulated through 

mechanisms involving systemic inflammation and 

microbial translocation. The pathophysiological 

link between periodontal disease, 

neuroinflammation, and neurodegenerative diseases 

is shown in Figure 1. 

Multiple sclerosis is an autoimmune demyelinating 

disease with various environmental and genetic 

triggers, which may be worsened by systemic 

inflammation. Moreno et al. reported that peripheral 

inflammation induced by LPS may worsen axonal 

damage in experimental autoimmune 

encephalomyelitis rats (38). Another study 

demonstrated that oral P. gingivalis exacerbated MS 

symptoms in mice induced by myelin 

oligodendrocyte glycoprotein, highlighting a link to 

periodontal infection (39). However, 

epidemiological studies exploring the link between 

periodontal diseases and MS showed mixed results. 

A study in Taiwan demonstrated a female-specific 

association between periodontitis and MS (40), 

while a study in Norway observed no significant 

link (41). 

Alzheimer’s disease is associated with 

neurofibrillary tangles and β-amyloid plaques, 

resulting in neuronal and synaptic loss in important 

brain areas, including the hippocampus and 

entorhinal cortex. It is manifested by disorientation, 

memory deficits, language processing decline, and 

impaired judgment. Elevated systemic 

inflammatory markers such as IL-6, IL-1β, TNF-α, 

and CRP have been associated with increased 

dementia risk (42). Additionally, complement 

proteins were detected in amyloid plaques (43), 

supporting the role of immune mechanisms in AD. 

Periodontal diseases may lead to the entry of 

proinflammatory mediators and microbial agents 

into the brain through the trigeminal nerve or 

bloodstream, contributing to the development of 

AD. P. gingivalis and T. denticola have been found 

in postmortem AD brain tissues (16, 17). P. 

gingivalis proteases were also linked to tau 

pathology (17). In AD mouse models, oral P. 
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gingivalis exposure impaired cognition and 

increased amyloid deposition and proinflammatory 

cytokines (20). In wild-type mice, gingipain 

exposure led to neuronal degeneration and AD-like 

pathology (44). Other studies further confirmed 

cognitive impairments and memory deficits in 

periodontitis-induced rodent models (45). 

Parkinson’s disease is characterized by 

degeneration of dopaminergic neurons in the 

substantia nigra and formation of Lewy bodies 

composed of α-synuclein. PD can cause motor 

dysfunction and cognitive deficits. In PD brains, 

neuroinflammation is characterized by microglial 

activation and elevated cytokines such as IL-1β, IL-

6, and TNF-α (46). Notably, patients with PD 

usually struggle with oral hygiene, increasing their 

susceptibility to periodontitis (47).  

Recently, multiple studies found an association 

between periodontal diseases and PD. In their 

retrospective cohort study, Chen et al. reported a 

higher risk of PD in patients with periodontitis (48). 

Follow-up research was conducted and showed that 

dental scaling reduced PD risk (49). Furthermore, 

new-onset PD was associated with tooth loss (50). 

Another study identified P. gingivalis gingipain R1 

in blood clots from PD patients, highlighting its 

potential role in systemic inflammation and 

hypercoagulation (51). In a PD mouse model with 

the LRRK2 R1441G mutation, oral P. gingivalis 

increased α-synuclein, reduced dopaminergic 

neurons, and elevated microglial activity, 

supporting a causal link (52).

 

 

Figure 1: Pathophysiological link between periodontal disease, neuroinflammation, and neurodegenerative diseases (3). 
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Periodontal Disease Therapy 

Periodontal therapy aims to treat infection and 

inflammation to suppress tissue destruction. 

However, even after stabilization of the disease, 

tissue regeneration remains limited depending on 

age, defect type, and systemic health (53). 

Periodontal therapy may include surgery or 

adjunctive antimicrobials in severe cases, especially 

when mechanical debridement alone is inadequate 

(5). Notably, smoking can worsen outcomes; thus, 

its cessation is critical to treatment success (54), 

likely due to shifts in the subgingival microbiota.  

Although treatment reduces pathogen levels, 

recolonization may occur over time. Therefore, oral 

hygiene and professional maintenance are crucial to 

enhance treatment outcomes (55). In severe cases 

with tooth loss and bite dysfunction, complex 

prosthodontic rehabilitation is usually required; 

nevertheless, patients with periodontitis who 

underwent reconstructions remain at higher risk for 

tooth loss, influenced by factors such as 

socioeconomic status, age, diabetes, and non-

compliance (56). 

Periodontal therapy can also improve systemic low-

grade inflammation. Furthermore, while intensive 

therapy may initially and transiently affect 

endothelial function negatively, long-term 

improvement occurs after 6 months (57). Treatment 

also lowers inflammatory biomarkers (e.g., IL-6, 

TNF-α) in patients with cardiovascular disease and 

diabetes (58) and improves glycemic control in 

diabetics (59). Periodontal treatment should be 

personalized and based on disease mechanisms and 

host response. Future strategies also should involve 

inflammation modulators and immunotherapies, 

tailored using omics technologies to optimize 

individual outcomes (60). 

Conclusion 

Emerging evidence underscores the significant role 

of neurogenic inflammation in the pathogenesis of 

periodontal disease. Neuropeptides such as 

Substance P, CGRP, and VIP appear to mediate key 

inflammatory responses that influence periodontal 

tissue destruction and systemic inflammation. 

Moreover, growing data support a link between 

periodontitis and neurodegenerative diseases, 

including Alzheimer’s, Parkinson’s, and multiple 

sclerosis, through mechanisms involving microbial 

translocation and immune activation. 

Understanding these interactions may provide new 

therapeutic targets and improve both oral and 

systemic health outcomes. 
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