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Abstract 

Nerve regeneration in dental tissues is crucial to restore function and preserve oral health. But the 

regenerative process is seriously hampered by chronic inflammation, which can be brought on by 

autoimmune diseases, trauma, or recurring infections. Neuronal apoptosis, delayed axonal regrowth, 

and compromised neurotrophic support are all caused by inflammatory mediators, including pro-

inflammatory cytokines, reactive oxygen species, and matrix metalloproteinases. In dental t issues, these 

pathological alterations result in fibrosis, sensory dysfunction, and protracted healing. Neurotrophic 

factor supplementation, stem cell-based strategies, and targeted anti-inflammatory treatments may all 

aid in the restoration of nerve function in dental tissues that have been chronically inflamed, according 

to recent research. Developing successful regenerative therapies in dentistry requires an understanding 

of the relationship between inflammation and nerve regeneration. The mechanisms through which 

chronic inflammation hinders nerve regeneration are examined in this review, with particular attention 

paid to oxidative stress, extracellular matrix changes, and inflammatory signaling pathways. 

Keywords: Nerve regeneration, Chronic inflammation, Oxidative stress, Reactive Oxygen Species 
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Introduction 

The nervous system within the dental tissues is 

crucial for pain perception, mechano-sensation, and 

tissue hemostasis to maintain appropriate function 

and responsiveness to external stimuli (1). Long-

term functional impairment, delayed healing, and 

sensory abnormalities can result from damage to 

dental nerves caused by infection, trauma or chronic 

inflammation (2). Chronic inflammation is harmful 

and prolonged, forming a microenvironment that 

actively inhibits nerve regeneration, whereas acute 

inflammation is a self-limiting process intended to 

remove damaging stimuli and promote tissue repair. 

In the end, this chronic inflammatory response 

hinders the functional recovery of dental tissues by 

interfering with synaptic connectivity, axonal 

growth, and neuronal survival (3, 4). In dental 

tissues, persistent bacterial infections are one of the 

main causes of chronic inflammation, especially in 

conditions like periodontitis and pulpitis (5, 6).  

The immune system is continuously activated by 

these infections, which cause oxidative stress, 

extracellular matrix (ECM) remodeling, and the 

release of inflammatory mediators, all of which 

obstruct nerve repair processes (7). When microbial 

antigens remain in infected tissues, inflammation 

cannot be resolved, which prolongs the activation of 

immune cells like neutrophils, dendritic cells, and 

macrophages (8, 9). In addition to infectious causes, 

chronic inflammation is exacerbated by 

autoimmune disorders, systemic inflammatory 

diseases, and repetitive mechanical trauma, all of 

which make nerve regeneration even more difficult 

(10). On a molecular level, neuroinflammation and 

nerve degeneration are largely caused by pro-

inflammatory cytokines like interleukin-1 beta (IL-

1β), tumor necrosis factor-alpha (TNF-α), and 

interleukin-6 (IL-6) (11, 12). These cytokines 

interfere with axonal repair processes, inhibit 

neurotrophic signaling, and reduce neuronal 

survival. Because TNF-α binds to neuronal 

receptors and triggers apoptosis pathways, which 

result in axonal degeneration, it is especially 

neurotoxic (13). The same is true for IL-1β which 

exacerbates tissue damage by encouraging immune 

cell recruitment and microglial activation (14). 

Because it interferes with neuronal repair and 

disrupts synaptic plasticity, IL-6, which is involved 

in normal inflammatory resolution, becomes 

harmful in chronic inflammation. A neurotoxic 

environment that inhibits appropriate nerve 

regeneration in dental tissues is produced by the 

cumulative action of these cytokines.  

Oxidative stress, a consequence of the 

overproduction of reactive oxygen species (ROS), is 

another important factor in inflammation-induced 

nerve damage (15, 16). Chronic inflammatory 

conditions cause mitochondria in Schwann cells and 

neurons to malfunction, which impairs lipid 

peroxidation, energy metabolism, and neuronal 

apoptosis (17, 18). Nerve recovery becomes more 

challenging as oxidative stress worsens 

neurodegeneration (19). Chronic inflammation also 

causes dysregulation of Schwann cells, which are 

responsible for neurotrophic support and axonal 

remyelination. Schwann cells become reactively 

inflammatory rather than repair-promoting, which 

decreases their capacity to support nerve 

regeneration.  

Considering these difficulties, creating successful 

treatment plans requires an awareness of the cellular 

and molecular processes that underlie 

inflammation-induced neurodegeneration (20). 

Anti-inflammatory medications, neurotrophic factor 

supplements, and stem cell-based regenerative 

techniques may be able to prevent inflammation-

induced nerve degeneration, according to recent 

research (21, 22). The immunomodulatory and 

neuroprotective qualities of novel treatments 

utilizing mesenchymal stem cells (MSCs) and 

dental pulp stem cells (DPSCs) present promising 

paths toward the restoration of nerve function in 

inflammatory dental tissues (23, 24). This review 

examines important molecular pathways, cellular 

interactions, and therapeutic developments. It 

investigates how chronic inflammation affects nerve 

regeneration in dental tissues by examining the 

relationship among immune dysregulation, 

oxidative stress, and extracellular matrix 

remodeling and seeks to offer a thorough grasp of 

how long-term inflammation hinders nerve 
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regeneration and how new treatments could 

improve healing. 

Methods  

To find peer-reviewed research on chronic 

inflammation and nerve regeneration in dental 

tissues published between 2015 and 2024, this 

literature review used PubMed, ProQuest, Web of 

Science, and Google Scholar. Using keywords like 

“chronic inflammation,” “nerve regeneration,” 

“dental pulp neurodegeneration,” “oxidative stress,” 

and “cytokine-mediated neurotoxicity,” the search 

focused on studies looking at molecular pathways, 

cellular responses, and possible therapeutic 

approaches. Only studies that focused on acute 

inflammation were excluded; studies that examined 

the effects of inflammation on nerve repair in dental 

tissues in vitro, in vivo, and in clinical settings were 

included. Key inflammatory mediators such as 

tumor necrosis factor-alpha, interleukin-1 beta, and 

interleukin-6 were included in the extracted data 

along with oxidative stress, Schwann cell 

dysregulation, and extracellular matrix remodeling. 

Anti-inflammatory drugs, neurotrophic factor 

supplements, stem cell therapy, and biomaterial 

scaffolds were among the therapeutic approaches 

that were assessed. To determine common 

mechanisms of inflammation-induced nerve 

degeneration and evaluate the efficacy of different 

treatments, the chosen studies were critically 

examined. This review summarizes the available 

data to shed light on how chronic inflammation 

affects nerve healing and possible methods to 

promote dental tissue regeneration. 

Discussion  

Nerve regeneration in dental tissues is impaired 

and neurodegeneration is inflammation-mediated 

Chronic inflammation modifies the molecular and 

cellular mechanisms that promote neuronal survival 

and axonal growth, creating an environment not 

conducive to nerve regeneration in dental tissues 

(25, 26). Chronic inflammation lasts longer and 

gradually injures the nervous system, unlike acute 

inflammation, which is necessary for tissue repair 

since it clears infections and starts the healing 

process (27, 28). Complete functional recovery is 

prevented by the overexpression of inflammatory 

mediators as a result of the chronic activation of 

immune responses, which disrupts 

neurodegenerative processes (29). Chronic 

inflammation suppresses nerve regeneration 

primarily through the ongoing release of pro-

inflammatory cytokines like interleukin-1 beta (IL-

1β), interleukin-6 (IL-6), and tumor necrosis factor-

alpha (TNF-α) (30). Through the induction of 

synaptic dysfunction, axonal degeneration, and 

neuronal apoptosis, these cytokines disrupt the 

delicate balance between nerve injury and repair 

(31). By acting through neuronal receptors 

promoting caspase activation, causing programmed 

cell death, and triggering intracellular apoptotic 

mechanisms, TNF-α alone has been found to cause 

neurotoxicity (32). In the same way, IL-1β 

participates in neuronal damage by facilitating 

immune cell infiltration and perpetuating microglial 

activation that advances the inflammatory cascade 

(33). As a result of interference with neurotrophic 

signaling and Schwann cell-mediated axonal 

regeneration, IL-6 despite its dual pro-inflammatory 

and regenerative roles, becomes primarily 

neurotoxic during chronic inflammatory conditions 

(34). Oxidative stress is a key player in 

inflammation-mediated neurodegeneration in 

combination with cytokine imbalance. Neurons, 

Schwann cells, and support tissues have oxidative 

insults due to overexpression of ROS and nitrogen 

species due to chronic inflammation (35, 36). 

Axonal transport impairment and ensuing 

neurodegeneration are the result of mitochondrial 

DNA mutations, defective energy production, and 

impaired calcium homeostasis in neurons that are 

under oxidative stress, which is highly vulnerable 

(37, 38). A self-sustaining cycle of neuronal damage 

is created when both mitochondrial dysfunction and 

oxidative stress are present (39). Damaged 

mitochondria release more ROS that further 

exacerbate nerve damage. Oxidative stress, as 

indicated by studies, not only inhibits the survival of 

neurons but also triggers the activation of glial cells 

and the secretion of neurotoxic factors that further 

inhibit the potential for regeneration (40). Chronic 

inflammation exerts negative effects on cellular 

components essential for nerve regeneration along 
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with molecular disruptions. Schwann cells, which 

have a central role in the repair of axons and 

remyelination in chronically inflamed tissues, 

experience dramatic functional alterations (41). 

Schwann cells usually support neuronal 

regeneration through the secretion of brain-derived 

neurotrophic factors (BDNFs) and nerve growth 

factors (NGFs), which promote neuronal survival 

and axonal outgrowth (42, 43). Schwann cells, 

however, change from a pro-regenerative phenotype 

to a reactive inflammatory phenotype in inflamed 

tissue (44, 45). This leads to less secretion of 

neurotrophic factors, increased production of 

inflammatory mediators, and impaired 

remyelination. By damaging the supporting cellular 

network necessary for regeneration, this change also 

interferes with the process of nerve repair. 

Remodeling of the extracellular matrix and 

establishment of a resistance to regeneration 

microenvironment 

In the direction of axonal elongation and regulation 

of cellular interactions, the extracellular matrix 

(ECM) supplies the structural and biochemical 

support for nerve regeneration. The ECM is, 

however, subject to severe remodeling when there is 

persistent inflammation that negatively affects the 

repair of nerves (46). Axonal outgrowth is 

physically inhibited by the thick scar tissue formed 

by the excessive deposition of fibrotic materials like 

collagen types I and III brought on by an extended 

inflammatory response (47). When fibrotic tissue 

builds up neurons are unable to move through 

injured areas resulting in partial nerve recovery and 

long-term sensory impairment (48). Overexpression 

of matrix metalloproteinases (MMPs), especially 

MMP-9 and MMP-13, which break down vital 

ECM proteins and neurotrophic factor-binding sites 

is another important factor causing ECM disruption 

(49). Laminin and fibronectin, which are essential 

for neuronal adhesion and axonal migration, are 

broken down by MMP overactivity (50). In addition 

to impeding effective nerve repair, the excessive 

breakdown of these structural proteins creates an 

unstable regenerative microenvironment. While the 

removal of damaged tissue during the early phases 

of healing is necessary, persistent MMP activity 

overexpression in chronic inflammation sets off a 

destructive cycle in which the extracellular matrix is 

unable to support neuronal regeneration. Chronic 

inflammation not only causes fibrotic alterations but 

also modifies the bioavailability of neurotrophic 

factors which are necessary for nerve repair. 

Neuronal survival and axonal extension depend on 

the release of NGF, glial cell line-derived 

neurotrophic factor (GDNF), and ciliary 

neurotrophic factor (CNTF), all of which are 

inhibited by oxidative stress and inflammatory 

cytokines (51, 52). Unfinished nerve recovery 

results from the reduction of these growth factors, 

which restricts the capacity of regenerating axons to 

form new synaptic connections. Chronically 

inflamed dental tissues develop a regeneration-

resistant microenvironment as a result of this 

imbalance between excessive ECM remodeling 

fibrosis and growth factor depletion (53, 54). 

Possible therapeutic approaches to reverse 

inflammatory nerve damage 

In an attempt to avert inflammation-induced 

neurodegeneration and restore neuronal function in 

dental tissues, several therapeutic approaches have 

been investigated due to the broad implications of 

chronic inflammation on nerve regeneration. One 

such approach involves the use of anti-

inflammatory medications to regulate cytokine 

function and reduce neurotoxicity (55). 

Pharmacological agents against the TNF-α and IL-

1β signaling pathways have demonstrated potential 

in preclinical studies through Schwann cell-

mediated induction of nerve regeneration, reducing 

neuroinflammation and maintaining axonal 

integrity (56, 57). Cytokine selective inhibitors were 

found to have neuroprotective effects by restoring 

neurotrophic factor expression and preventing 

excessive activation of immune cells (58). Another 

approach includes the application of antioxidant-

based therapy to scavenge oxidative stress. N-

acetylcysteine, resveratrol, and curcumin are a few 

of the molecules that have been studied for their 

ROS-scavenging properties, their capacity to 

promote neuronal survival, and their ability to 

enhance mitochondrial function (59). These 

antioxidants have demonstrated efficacy in 
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preclinical models by blocking lipid peroxidation, 

maintaining calcium homeostasis, and safeguarding 

the structural integrity of neuronal membranes (60, 

61). Reducing oxidative stress may be a significant 

step in avoiding long-term neurodegenerative 

effects of chronically inflamed dental tissues as 

evidenced by the potential role of antioxidant 

therapy in nerve regeneration (62, 63). In instances 

where there has been damage to nerve function due 

to inflammation, regenerative medicine techniques, 

more precisely stem cell therapy, have been shown 

to have great promise (4, 64). Due to their 

immunomodulatory characteristics, bone marrow 

adipose tissue and dental pulp-derived 

mesenchymal stem cells can reduce inflammation 

while at the same time inducing nerve regeneration 

(65, 66). The neurotrophic factors BDNF, NGF, and 

GDNF released by these stem cells facilitate 

Schwann cell function, axonal extension, and 

neuronal differentiation (67, 68). Based on 

experimental research, stem cell transplantation 

may improve nerve repair by restoring deficient 

neuronal populations, minimizing fibrosis, and 

modulating immune responses (69). However, the 

optimization of delivery methodologies with 

assurance of long-term viability of transplanted 

cells and resolution of ethical and legal issues 

related to stem cell-based therapies are difficult. 

Besides pharmacological and regenerative medicine 

strategies, biomaterial scaffolds have been 

investigated as vehicles for neurotrophic factors and 

stem cell delivery. Biodegradable scaffolds 

composed of collagen, hyaluronic acid, or chitosan 

offer structural support and allow the controlled 

delivery of regenerative molecules (70). The 

scaffolds augment the regenerative capacity of 

inflammatory dental tissue by mimicking the natural 

extracellular matrix and supporting neuronal 

adhesion (71, 72). Preclinical investigations show 

that therapies based on scaffolds can optimize the 

success of nerve repair by improving axonal 

guidance, stabilizing the presence of neurotrophic 

factors, and guarding against injury caused by 

inflammation (73). 

Conclusion 

Chronic inflammation in extreme manners restrains 

nerve regeneration in dental tissues, disturbs 

cytokine signaling, increases oxidative stress 

changes and Schwann cell function, and remodels 

the extracellular matrix. Extended 

neurodegeneration ensues from the prolonged 

activity of inflammatory mediators like interleukin-

1 beta, interleukin-6, and tumor necrosis factor-

alpha that compromise neuronal survival and axonal 

regrowth. To comprehensively realize the precise 

effects of inflammatory mediators on dental nerve 

regeneration, more studies have to be conducted 

despite the promising results of anti-inflammatory 

drugs, stem cell therapies, and neurotrophic factor 

supplements. The major aims of future studies 

should include elucidating the molecular 

mechanisms responsible for inflammation-induced 

neurodegeneration and determining long-term 

effects on nerve function. To develop clinically 

useful treatments that restore normal sensory and 

functional capacity in chronic inflammatory dental 

disease patients, there will be a need to enhance 

regenerative strategies and optimize therapeutic 

interventions. 
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