

Review

Dynamic Balance Training and Its Role in Preventing Re-Injury in Athletes

Yasir Saleh Alnakhli^{1*}, Hashem Khalid Alghomari², Bodour Ali Alshehri³, Feras Abdullah Alzahrani², Arwa Saeed Alqarni⁴, Abdulrahman Yahya Alqahtani⁵, Nasra Sultan Alswilah⁶

¹ Department of Rehabilitation, King Abdulaziz Hospital, Jeddah, Saudi Arabia

² Department of Occupational Therapy, King Abdulaziz Medical City - National guard Hospital, Saudi Arabia

³ Department of Physiotherapy, Ministry of Health, Khamis Mushait, Saudi Arabia

⁴ Department of Physiotherapy, General Tathleeth Hospital, Riyadh, Saudi Arabia

⁵ Department of Physiotherapy, Armed Forces Southern Region Hospital, Abha, Saudi Arabia

⁶ Department of Physiotherapy, Long Term Care Hospital, Dhahran, Saudi Arabia

Correspondence should be addressed **Yasir Saleh Alnakhli**, Department of Rehabilitation, King Abdulaziz Hospital, Jeddah, Saudi Arabia, Email : yasir.alnakhli@hotmail.com

Copyright © 2025 **Yasir Saleh Alnakhli**. This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Received: 16 December 2025, Accepted: 24 January 2026, Published: 25 January 2026.

Abstract

Dynamic balance is a critical component of athletic performance and injury prevention, particularly in sports involving rapid changes in direction, landing, and single-leg tasks. Following musculoskeletal injuries, especially to the lower limbs, athletes often experience deficits in postural control and neuromuscular coordination that persist beyond the resolution of symptoms. These unresolved deficits increase the likelihood of re-injury when returning to play. Incorporating dynamic balance training into both preventive and rehabilitative protocols has shown consistent effectiveness in addressing these issues by improving sensorimotor responsiveness, joint stability, and movement efficiency under unpredictable conditions. The biomechanical influence of balance training extends to muscle activation patterns, force distribution, and alignment during high-risk movements. Improved postural control during landing, cutting, and deceleration has been observed in athletes who undergo structured balance training programs. Sport-specific adaptations further enhance its effectiveness, with athletes in soccer, basketball, and volleyball displaying reduced injury incidence and improved functional outcomes when balance training is tailored to the demands of their sport. Even in endurance sports, where balance appears less central, athletes benefit from improved stride symmetry and joint control. In rehabilitation, dynamic balance exercises play a pivotal role in the progression toward functional readiness. They facilitate motor learning, recalibrate neuromuscular timing, and allow for task-specific adaptation under load. These adaptations contribute to safer and more confident return-to-play transitions. When used in conjunction with objective assessments of postural stability and movement quality, balance training enhances decision-making in return-to-sport criteria. The growing body of evidence supports the integration of dynamic balance as a core element in both injury prevention and recovery, with broad applications across athletic disciplines and competitive levels.

Keywords: dynamic balance, re-injury prevention, neuromuscular control, athletic rehabilitation, postural stability

Introduction

the realm of sports performance and injury rehabilitation, maintaining and restoring balance is a fundamental component of athletic readiness. Dynamic balance, defined as the ability to maintain postural stability while transitioning through movement, plays a pivotal role in athletic function, particularly in sports that demand rapid changes in direction, speed, or position. Injuries involving the lower extremities, such as ankle sprains, anterior cruciate ligament (ACL) tears, and hamstring strains, often result in impairments in balance and proprioception, increasing the likelihood of re-injury upon return to sport (1). Therefore, targeted balance training has emerged as a cornerstone in both the prevention and rehabilitation of athletic injuries.

Dynamic balance is closely linked to neuromuscular control, which encompasses the coordinated activation of muscles and joint stabilizers in response to sensory feedback. Following an initial injury, deficits in neuromuscular function and proprioception can persist, even after clinical symptoms subside (2). These deficits contribute to compromised joint stability, particularly during high-demand tasks such as pivoting, jumping, or decelerating. Without addressing these deficits through focused interventions, athletes remain at high risk of re-injury upon resumption of competitive activities. Dynamic balance training aims to restore these deficits by challenging postural control in progressively unstable or sport-specific contexts, thereby promoting motor learning and sensorimotor integration.

Multiple studies have demonstrated the benefits of incorporating dynamic balance exercises into both prehabilitation and rehabilitation programs. For example, in individuals recovering from ACL reconstruction, balance training has been associated with improvements in joint stability, reduced injury recurrence, and enhanced functional performance (3). Moreover, balance-focused interventions are particularly effective when integrated early in rehabilitation and continue through the return-to-play phase. These findings underscore the role of

dynamic balance as more than a general fitness component but rather a functional requirement that directly impacts injury risk and athletic performance.

Injury prevention programs that include dynamic balance components, such as the FIFA 11+ for soccer players, have shown significant reductions in injury incidence across various athletic populations (4). These programs typically involve exercises that mimic sport-specific demands while placing athletes in unstable positions, requiring constant postural adjustments. The ability to effectively respond to such stimuli reflects improved sensorimotor control, which is vital for mitigating uncontrolled joint movements that could lead to re-injury.

Review

Dynamic balance training has demonstrated considerable effectiveness in reducing the risk of re-injury among athletes by targeting deficits in neuromuscular control and proprioception that often persist following initial recovery. These deficits, if unaddressed, can lead to altered movement patterns and compromised joint stability during athletic tasks. Evidence suggests that structured balance training not only restores functional stability but also enhances motor coordination, leading to more efficient and safer movement mechanics (5, 6). The ability of athletes to adapt quickly to changing environmental and biomechanical demands is critical in dynamic sports, and balance-focused exercises serve to simulate these challenges, improving the body's automatic response to perturbations.

Furthermore, dynamic balance interventions have shown success across various sports and injury types, with particular benefits noted in lower extremity injury prevention. For instance, when implemented as part of multi-component training programs, balance exercises have contributed to significant reductions in re-injury rates among athletes returning from ankle and knee injuries (6). These outcomes emphasize the importance of including sport-specific balance protocols during both rehabilitation and return-to-play phases. As

sports medicine continues to evolve, dynamic balance training remains a valuable, evidence-based strategy for enhancing long-term athlete resilience and minimizing re-injury risk.

Biomechanical Role of Dynamic Balance in Re-Injury Prevention

Dynamic balance plays an integral role in controlling movement patterns that safeguard joints during high-demand athletic actions. Following an injury, even subtle disruptions in balance can lead to compensatory mechanisms that place excessive strain on surrounding structures. These biomechanical adjustments are often not consciously perceived by the athlete, yet they significantly influence load distribution across joints during motion. An unstable joint, particularly at the ankle or knee, may alter the alignment of kinetic chains, increasing vulnerability during sport-specific movements such as cutting, pivoting, and landing (7). When athletes return to sport without resolving these biomechanical deficiencies, their risk of re-injury increases regardless of strength or flexibility gains during rehabilitation.

Research focusing on joint kinematics shows that individuals with impaired dynamic balance exhibit altered ground reaction forces and joint moments, especially during unilateral tasks. These alterations influence how forces are absorbed and transmitted through the limb. For instance, lateral sway and delayed muscle activation around the ankle and hip can reduce the capacity to maintain trunk and limb alignment under load. The result is often a shift in center of mass that cannot be corrected quickly enough to prevent aberrant joint motion, especially in fast-reactive scenarios like sudden deceleration or directional changes. Investigations using motion analysis have highlighted a connection between dynamic postural stability and landing mechanics that contribute to ACL injury risk, showing that better balance correlates with more favorable knee flexion angles and reduced valgus loading (8).

Muscle coordination also plays a defining role in the biomechanical response to instability. Post-injury, there is often a disruption in the timing and intensity of muscle activation sequences, especially in

stabilizing muscles like the gluteus medius, hamstrings, and peroneals. When these muscles fail to respond appropriately, the body loses its capacity to adjust to perturbations, especially in unpredictable sport environments. Dynamic balance training addresses these neuromuscular gaps by progressively challenging the body under varying levels of instability, forcing adaptations in motor control. Studies demonstrate that such training leads to quicker muscle firing patterns and more symmetrical loading between limbs, which are both vital for reducing compensatory stress (9).

Incorporating unstable surfaces, multi-directional reach tasks, or perturbation-based drills into a training program stimulates the body's intrinsic control mechanisms. Unlike isolated strength training, which improves force output but not necessarily motor responsiveness, dynamic balance exercises improve the athlete's ability to process sensory input and adjust in real time. For example, wobble board and single-leg stance exercises enhance proprioceptive acuity and joint awareness, directly influencing the body's ability to correct for misalignments during motion. These biomechanical improvements have shown strong relationships with reductions in re-injury incidence in both clinical and field-based evaluations (10).

Sport-Specific Outcomes of Balance Training

Balance training does not affect all athletes equally. Its effectiveness often depends on the nature of the sport, the types of movements performed, and the common injury mechanisms involved. In sports requiring rapid direction changes, aerial landings, or frequent single-leg support phases, balance becomes a core performance element. Athletes in these settings show more measurable gains from targeted balance interventions, both in injury prevention and in performance metrics. For instance, volleyball players who consistently land on one foot from vertical jumps face considerable stress on the ankle and knee joints. Programs designed around dynamic balance exercises tailored to jumping and landing patterns have improved joint stabilization and reduced injury frequency in these populations (11).

The transfer of training effects also varies with sport demands. In soccer, players constantly adapt to irregular surfaces, unexpected contact, and rapid transitions between sprinting and stopping. Balance training, especially when it includes reactive and sport-simulated conditions, enhances an athlete's ability to control momentum and maintain positioning during physical contests. Studies with soccer athletes have shown that programs incorporating unstable surface drills and perturbation tasks resulted in improvements in agility and decreased non-contact injury rates, specifically to the lower extremities (12). These outcomes suggest that balance is not just a general skill but one that responds best to sport-contextual applications.

When applied in basketball, a sport characterized by frequent deceleration and lateral motion, balance training has demonstrated improvements in movement control during high-risk tasks. Athletes subjected to unstable single-leg drills showed improvements in stability during cutting maneuvers and a reduction in time to stabilize after landing. These effects are especially valuable for athletes returning from ankle sprains, where even mild instability increases re-injury risk. Results from intervention programs reveal enhanced joint control during high-load decelerations, allowing for quicker recovery between directional changes and fewer unintentional weight shifts that place the joint in vulnerable positions (13).

In contrast, endurance sports such as long-distance running show less dramatic improvements in performance outcomes with balance training. However, even in these disciplines, where the repetitive nature of movement would suggest less reliance on dynamic balance, runners with histories of lower limb injuries benefit from incorporating balance-based routines. Programs targeting sensorimotor awareness and neuromuscular timing have reduced asymmetry in stride patterns and improved landing mechanics during midstance, factors known to affect cumulative injury risk over time. These changes reflect balance training's contribution to reducing excessive or uncontrolled

joint motion, even when the athlete performs in a seemingly symmetrical, linear sport (14).

Rehabilitation and Return-to-Play Integration

Dynamic balance training has gained widespread support within the injury rehabilitation framework, particularly in its ability to bridge the gap between clinical recovery and actual sport readiness. Athletes often regain full range of motion and strength before restoring adequate neuromuscular control, which remains compromised well into late-stage rehab. This lag can result in premature return-to-play decisions, where athletes meet baseline clinical criteria yet remain functionally vulnerable to reinjury. Studies have shown that including dynamic balance protocols during mid to late rehabilitation improves movement coordination under load, especially in tasks involving multiplanar control and unexpected perturbations (15).

Post-injury, compensatory strategies often emerge to protect the affected limb. These movement alterations can persist even after overt symptoms are resolved. Balance exercises challenge the athlete to reestablish symmetrical control and re-engage stabilizing musculature in a progressively demanding environment. For instance, single-leg stance variations on compliant surfaces or during upper-limb distraction drills retrain joint position sense and reflexive muscular responses. Athletes exposed to such routines during rehabilitation exhibit faster transition times from double to single-leg support and improved postural control in landing tasks, both critical for reducing joint stress during competitive play (16).

Gradual integration of sport-specific balance activities into return-to-play planning allows for an adaptive recalibration of motor control strategies. Simple balance drills evolve into reactive, sport-relevant patterns that mimic the complexity of real competition. Athletes returning from knee injuries, for example, benefit from lateral displacement and cutting exercises where balance is challenged under high-speed conditions. These drills expose the individual to the physical demands of sport while preserving a controlled rehabilitation setting. Emerging research supports the use of progression-

based dynamic balance testing as a return-to-play checkpoint, highlighting the role of task difficulty and environment in evaluating readiness (17).

Incorporating objective balance metrics into return-to-play protocols provides clinicians with data beyond pain or strength alone. Tools such as force plates, balance error scoring systems, or motion capture can reveal subtle deficits in postural control not visible during traditional assessments. These findings have helped refine discharge criteria in rehabilitation, especially in athletes prone to re-injury due to proprioceptive impairments. Studies investigating re-injury rates post-clearance show significantly lower recurrence when dynamic stability was explicitly restored through balance-focused interventions. Rather than relying solely on strength benchmarks, clinicians increasingly favor a combination of neuromuscular and functional testing that reflects actual sporting demands (18).

Conclusion

Dynamic balance training enhances neuromuscular control and movement precision essential for injury prevention. Its sport-specific applications improve functional stability across various athletic demands. Incorporating balance training into rehabilitation ensures more complete recovery beyond strength alone. As evidence grows, its role in return-to-play protocols continues to strengthen across disciplines.

Disclosure

Conflict of interest

There is no conflict of interest.

Funding

No funding.

Ethical consideration

Non applicable.

Data availability

All data is available within the manuscript.

Author contribution

All authors contributed to conceptualizing, data drafting, collection and final writing of the manuscript.

References

1. McGuine TA, Greene JJ, Best T, Leverson G. Balance as a predictor of ankle injuries in high school basketball players. *Clinical Journal of Sport Medicine*. 2000;10(4):239-44.
2. Lephart SM, Pincivero DM, Giraido JL, Fu FH. The role of proprioception in the management and rehabilitation of athletic injuries. *The American journal of sports medicine*. 1997;25(1):130-7.
3. Hartigan E, Axe MJ, Snyder-Mackler L. Perturbation training prior to ACL reconstruction improves gait asymmetries in non-copers. *Journal of Orthopaedic Research*. 2009;27(6):724-9.
4. Soligard T, Myklebust G, Steffen K, Holme I, Silvers H, Bizzini M, et al. Comprehensive warm-up programme to prevent injuries in young female footballers: cluster randomised controlled trial. *Bmj*. 2008;337.
5. Gribble PA, Hertel J, Plisky P. Using the Star Excursion Balance Test to assess dynamic postural-control deficits and outcomes in lower extremity injury: a literature and systematic review. *Journal of athletic training*. 2012;47(3):339-57.
6. Emery CA, Roy T-O, Whittaker JL, Nettel-Aguirre A, Van Mechelen W. Neuromuscular training injury prevention strategies in youth sport: a systematic review and meta-analysis. *British journal of sports medicine*. 2015;49(13):865-70.
7. Pfeifer CE, Beattie PF, Sacko RS, Hand A. Risk factors associated with non-contact anterior cruciate ligament injury: a systematic review. *International journal of sports physical therapy*. 2018;13(4):575.
8. Pappas E, Shiyan MP, Ford KR, Myer GD, Hewett TE. Biomechanical deficit profiles associated with ACL injury risk in female athletes. *Medicine and science in sports and exercise*. 2016;48(1):107.

9. McKeon PO, Ingersoll CD, Kerrigan DC, Saliba E, Bennett BC, Hertel J. Balance training improves function and postural control in those with chronic ankle instability. *Medicine & science in sports & exercise*. 2008;40(10):1810-9.

10. Thorpe JL, Ebersole KT. Unilateral balance performance in female collegiate soccer athletes. *The Journal of Strength & Conditioning Research*. 2008;22(5):1429-33.

11. Andreeva A, Melnikov A, Skvortsov D, Akhmerova K, Vavaev A, Golov A, et al. Postural stability in athletes: The role of sport direction. *Gait & posture*. 2021;89:120-5.

12. Mohammadi F. Comparison of 3 preventive methods to reduce the recurrence of ankle inversion sprains in male soccer players. *The American journal of sports medicine*. 2007;35(6):922-6.

13. Plisky PJ, Rauh MJ, Kaminski TW, Underwood FB. Star Excursion Balance Test as a predictor of lower extremity injury in high school basketball players. *Journal of orthopaedic & sports physical therapy*. 2006;36(12):911-9.

14. Crowell HP, Davis IS. Gait retraining to reduce lower extremity loading in runners. *Clinical biomechanics*. 2011;26(1):78-83.

15. Myer GD, Ford KR, Brent JL, Hewett TE. Differential neuromuscular training effects on ACL injury risk factors in "high-risk" versus "low-risk" athletes. *BMC musculoskeletal disorders*. 2007;8(1):39.

16. Eils E, Rosenbaum D. A multi-station proprioceptive exercise program in patients with ankle instability. *Medicine and science in sports and exercise*. 2001;33(12):1991-8.

17. Dingenen B, Gokeler A. Optimization of the return-to-sport paradigm after anterior cruciate ligament reconstruction: a critical step back to move forward. *Sports medicine*. 2017;47(8):1487-500.

18. Padua DA, Marshall SW, Boling MC, Thigpen CA, Garrett Jr WE, Beutler AI. The Landing Error Scoring System (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: the JUMP-ACL study. *The American journal of sports medicine*. 2009;37(10):1996-2002.