

Review

Assessment and Management of Cardiac Arrhythmias in Patients With Electrolyte Imbalances

Arwa Farouk Khatib^{1*}, Nasser Ibrahim Aldawsari², Ahmed Abdulla Alshaer³, Hussain Ali Alkhalaif⁴, Burair Mansour Al Jassas⁵, Zahra Ali Ghazwi⁶, Lameer Adel Saleh⁶, Jumana Ali Basowad⁶

¹ Critical Care Medicine, East Jeddah Hospital, Jeddah, Saudi Arabia

² Hijra Primary Healthcare, Ministry of Health, Medina, Saudi Arabia

³ Adult Intensive Care Unit, Maternity and Children Hospital, Dammam, Saudi Arabia

⁴ Department of Medicine, Prince Saud Bin Jalawi Hospital, Al Ahsa, Saudi Arabia

⁵ Adult Intensive Care Unit, Ministry of Health, Dammam, Saudi Arabia

⁶ College of Medicine, Groningen University, Groningen, Netherlands

Correspondence should be addressed **Arwa Farouk Khatib**, Critical Care Medicine, East Jeddah Hospital, Jeddah, Saudi Arabia, Email: af.k@windowslive.com

Copyright © 2025 **Arwa Farouk Khatib**. This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Received: 07 December 2025, Accepted: 14 January 2026, Published: 22 January 2026.

Abstract

Electrolyte imbalances are a frequent yet under-recognized cause of cardiac arrhythmias across a wide range of clinical settings. Alterations in serum potassium, calcium, magnesium, and sodium levels can directly affect myocardial excitability, conduction, and repolarization, often resulting in rhythm disturbances that vary in severity from mild ectopy to life-threatening ventricular tachyarrhythmias. The mechanisms underlying these arrhythmias include abnormal automaticity, triggered activity, and impaired conduction pathways, all of which are influenced by the concentration gradients and cellular handling of key electrolytes. Electrocardiographic changes often serve as early indicators of these disturbances, but interpretation must be guided by clinical context, coexisting conditions, and concurrent medications that may amplify or mask their effects. Diagnosis relies on an integrated assessment combining laboratory values with electrocardiogram monitoring to detect characteristic patterns such as prolonged QT intervals, U waves, or widened QRS complexes. In critically ill patients or those receiving therapies that disrupt electrolyte balance, continuous surveillance is essential to catch early arrhythmic manifestations before progression. Management strategies are condition-specific and must be delivered carefully to avoid overcorrection, which itself poses arrhythmic risk. Potassium and magnesium repletion, calcium stabilization, and sodium adjustments must be tailored to both the severity of derangement and the individual patient's cardiac profile. Risk evaluation tools, combined with telemetry and serial assessments, aid in preventing recurrence and guide long-term care in patients prone to recurrent imbalances.

Keywords: *electrolyte imbalance, cardiac arrhythmia, ECG monitoring, ion channel dysfunction, risk stratification*

Introduction

Electrolyte balance is essential for the normal electrical and contractile function of the heart. Cardiac myocytes rely on the proper distribution of ions across cellular membranes to generate and propagate action potentials. Even slight deviations in serum electrolyte concentrations can disturb cardiac conduction and lead to arrhythmias. Among the most impactful electrolytes are potassium, calcium, magnesium, and sodium, each of which contributes uniquely to phases of the cardiac action potential. Disruptions in their levels can result in a range of rhythm abnormalities, from atrial fibrillation to lethal ventricular tachycardia (1).

Potassium plays a particularly vital role in the repolarization phase of the cardiac cycle. Hypokalemia can delay repolarization and enhance automaticity, leading to early afterdepolarizations and a predisposition to torsades de pointes. Hyperkalemia, on the other hand, reduces membrane excitability and can suppress conduction, potentially resulting in bradycardia or asystole. The electrocardiogram (ECG) is a critical diagnostic tool in detecting these changes, with characteristic findings such as peaked T waves in hyperkalemia or prominent U waves in hypokalemia. Early recognition and management of potassium abnormalities are crucial in arrhythmia prevention (2).

Calcium and magnesium also influence cardiac excitability and rhythm. Calcium affects both depolarization and myocardial contractility, while magnesium modulates ion transport and helps stabilize cell membranes. Hypocalcemia can prolong the QT interval, while hypercalcemia may shorten it and lead to arrhythmias. Similarly, magnesium deficiency can provoke ventricular ectopy and torsades de pointes, especially in patients with coexisting hypokalemia. Supplementation of magnesium is often used in acute settings to prevent recurrent ventricular arrhythmias, especially those related to drug-induced QT prolongation (3).

In hospitalized and critically ill patients, electrolyte imbalances are common due to factors such as renal impairment, fluid shifts, gastrointestinal losses, and

the use of medications like diuretics and antiarrhythmics. These patients are at higher risk of developing arrhythmias as a result of rapidly changing electrolyte levels. Careful monitoring of both electrolytes and cardiac rhythms is required, particularly in settings such as intensive care units. Additionally, the correction of electrolyte disturbances must be approached cautiously, as overly rapid normalization can introduce new risks. For example, aggressive repletion of potassium in chronic hypokalemia may overshoot into hyperkalemia, while sudden changes in calcium levels can destabilize myocardial conduction (4).

Review

Electrolyte imbalances are a critical and often reversible cause of cardiac arrhythmias, making their timely recognition and management essential in both acute and chronic care settings. The interplay between electrolytes such as potassium, magnesium, and calcium with cardiac ion channels influences the generation and propagation of electrical impulses. In clinical practice, disturbances in potassium levels are particularly associated with significant arrhythmic risks, including ventricular tachyarrhythmias and conduction blocks. The risk is further amplified when multiple electrolyte imbalances coexist, as is often the case in hospitalized patients with renal dysfunction or those receiving diuretics or chemotherapeutic agents (5).

Management strategies must be carefully tailored to address both the underlying electrolyte disorder and the resulting arrhythmia. Restoration of normal electrolyte levels remains a cornerstone of treatment, but must be conducted cautiously to avoid sudden shifts that can destabilize cardiac electrophysiology. Clinical decision-making should consider individual patient risk factors, such as preexisting cardiac disease or medication-induced QT prolongation. Regular monitoring using electrocardiography and serum electrolyte panels is essential to guide therapy and prevent recurrence. Early intervention not only reduces arrhythmic complications but also improves overall patient outcomes in high-risk populations (6, 7).

Electrolyte Imbalance and Arrhythmia Mechanisms

Cardiac electrophysiology depends heavily on the fine-tuned movement of ions across the membranes of cardiac myocytes. When electrolyte levels shift, even slightly, the consequences on ion channel function can be substantial. Potassium, calcium, and magnesium imbalances especially alter resting membrane potentials and the duration of action potentials, setting the stage for abnormal automaticity, triggered activity, or reentry circuits that underlie arrhythmias. These mechanisms are not isolated to one electrolyte or one type of arrhythmia; they often overlap and intensify in complex clinical scenarios.

Hypokalemia reduces the potassium gradient across the cell membrane, slowing repolarization and prolonging the action potential duration. This promotes early afterdepolarizations, particularly in myocardial cells with prolonged repolarization phases. Such electrical instability often gives rise to polymorphic ventricular tachycardia, including torsades de pointes. In contrast, elevated potassium levels reduce the resting membrane potential, leading to partial inactivation of sodium channels and slower conduction velocity. As hyperkalemia progresses, it shortens the action potential and can ultimately cause sine-wave ECG patterns or asystole when severe enough (8).

Calcium disturbances present distinct but equally impactful electrophysiological changes. Low calcium levels prolong the plateau phase of the cardiac action potential, extending the QT interval and promoting delayed afterdepolarizations. In a clinical setting, this appears as increased susceptibility to both atrial and ventricular ectopy. Hypercalcemia, although less common, shortens the QT interval and may cause a narrowing of the ventricular action potential, which can suppress automaticity in nodal tissue and induce bradycardias. The sensitivity of the sinoatrial and atrioventricular nodes to serum calcium shifts adds a layer of complexity, especially in patients with existing conduction system disease or digitalis therapy (9).

Magnesium plays a stabilizing role in membrane potential and ion transport. Hypomagnesemia, frequently associated with diuretic use or gastrointestinal losses, can enhance inward calcium and sodium currents, predisposing the myocardium to triggered activity. The relationship between magnesium deficiency and torsades de pointes is well documented, particularly when combined with hypokalemia or prolonged QT syndromes. Magnesium supplementation is often effective in terminating such arrhythmias even when serum magnesium is only mildly reduced, suggesting a broader role in modulating electrophysiological stability (10).

Sodium, although tightly regulated and often overlooked in arrhythmia discussions, participates in the rapid depolarization of myocardial cells, especially in the atrial and ventricular myocardium. Severe hyponatremia may reflect an overall disturbance in fluid and osmotic balance, which can indirectly impact cardiac electrophysiology through changes in myocardial cell volume and autonomic tone. Conversely, hypernatremia has been linked to increased sympathetic activity, which in some settings contributes to arrhythmic potential, especially under conditions of cardiac ischemia or heart failure. While sodium disorders are more often markers of systemic instability, their influence on arrhythmogenesis should not be dismissed in critically ill patients (11).

Diagnostic Considerations in Electrolyte-Induced Arrhythmias

Detecting arrhythmias triggered by electrolyte imbalances begins with recognizing subtle clinical signs that often precede more dramatic cardiac events. Electrolyte shifts usually evolve gradually, so arrhythmias may initially present as transient palpitations, vague chest discomfort, or dizziness. These non-specific symptoms can mask serious underlying disturbances. Standard lab tests paired with continuous ECG monitoring become essential tools in identifying the link between abnormal ion levels and disrupted cardiac rhythms. The challenge increases when electrolyte abnormalities coexist or when comorbidities alter the typical presentation patterns.

The electrocardiogram offers the first and often the most immediate window into the heart's electrical response to electrolyte changes. Recognizing distinct ECG signatures associated with specific electrolyte disturbances improves early diagnosis and allows clinicians to act before arrhythmias become life-threatening. For example, hypokalemia is typically associated with flattened or inverted T waves, prominent U waves, and in some cases, a prolonged QU interval. If left unchecked, these progress to serious arrhythmias like torsades de pointes. Hyperkalemia follows a recognizable progression from tall, peaked T waves to widened QRS complexes and ultimately, a sine-wave pattern, which demands urgent correction to avoid cardiac arrest (12).

Interpretation of these patterns, however, depends heavily on context. Medications, especially antiarrhythmics, diuretics, and psychotropic drugs, frequently alter both electrolyte levels and ECG findings. The presence of digitalis, for instance, can distort ECG interpretation due to its own characteristic changes, such as scooped ST segments or increased automaticity, which may resemble or mask signs of hypokalemia or hypercalcemia. In critically ill patients, fluid shifts and organ dysfunction further complicate the diagnostic picture. Renal failure, often associated with hyperkalemia and metabolic acidosis, can blunt the heart's response to therapy if the electrolyte burden is not addressed in parallel (13).

Laboratory evaluation should not rely solely on serum values. In some cases, plasma levels may not reflect true intracellular concentrations. Magnesium, in particular, can appear normal in serum while still being deficient at the cellular level, especially during acute illness or ongoing diuretic use. For patients with persistent arrhythmias and inconclusive lab findings, empiric magnesium supplementation may still be justified. Advanced diagnostics, including cardiac electrophysiology studies, may be warranted in complex cases where arrhythmias persist despite normalization of electrolytes, especially if structural heart disease or channelopathies are suspected (14).

Diagnostic algorithms benefit from integrating multiple data points rather than focusing on isolated values. Tools like serial ECGs, point-of-care electrolyte testing, and telemetry trend analysis allow clinicians to detect evolving patterns rather than single-timepoint abnormalities. This approach becomes even more relevant in high-risk settings such as postoperative care, dialysis units, or during chemotherapy, where both electrolyte shifts and cardiac instability are common. Precision in diagnosis means looking beyond numbers, interpreting the dynamic relationship between ionic shifts and electrical function in real time. It also means understanding patient-specific variables like drug interactions, metabolic state, and fluid balance, all of which can skew both lab results and cardiac behavior (15).

Management Approaches and Risk Evaluation

Managing cardiac arrhythmias in the setting of electrolyte disturbances demands precision and speed. Delays in correction can convert reversible abnormalities into sustained, life-threatening electrical instability. The first step is identifying which electrolyte derangement is contributing most to the rhythm disturbance. Correction protocols must be both targeted and proportional to the severity of deviation. Overcorrection poses its own risks, especially with potassium and sodium, where rapid shifts can worsen conduction abnormalities or trigger osmotic complications. Clear thresholds exist for initiating treatment, but those guidelines must be interpreted in light of the patient's comorbidities, medication history, and recent cardiac events (16).

When hypokalemia presents with arrhythmias, potassium replacement becomes a priority. Intravenous administration is often required when ECG changes emerge or when arrhythmias are persistent. Continuous cardiac monitoring is essential during repletion, as myocardial irritability can increase transiently during correction. Oral replacement remains appropriate for mild cases, but concurrent magnesium deficiency can hinder potassium uptake and worsen cardiac excitability. This interplay is often overlooked, leading to ineffective treatment. Magnesium sulfate,

administered intravenously, is not only useful in correcting low magnesium levels but also stabilizes cardiac membranes, particularly in cases of polymorphic ventricular tachycardia or digoxin-induced arrhythmias (17).

Hyperkalemia, especially when serum levels exceed 6.5 mmol/L or ECG changes are evident, must be treated emergently. Calcium gluconate is administered first to stabilize the myocardial membrane without altering potassium levels. This is followed by agents like insulin with glucose, beta-agonists, and sodium bicarbonate to shift potassium intracellularly. Loop diuretics or dialysis may be used for definitive removal. Importantly, identifying the cause of the potassium rise is central to preventing recurrence. In cases where potassium levels fall rapidly, for example following dialysis, rebound hypokalemia may occur, creating a second window for arrhythmic risk if not properly anticipated (18).

In high-risk patients, such as those with reduced ejection fraction or pre-existing conduction system disease, the threshold for intervention is lower. Even mild electrolyte disturbances can destabilize an already vulnerable myocardium. Risk stratification tools often include laboratory trends, ECG markers like QT interval prolongation, and clinical signs such as hypotension or syncope. In patients undergoing treatment with QT-prolonging medications, serial ECG monitoring becomes necessary, especially when combinations of drugs are used. For patients with structural heart disease or implantable devices, stored rhythm data may offer early warnings of arrhythmic patterns linked to electrolyte swings. Those with recurrent episodes may benefit from prophylactic interventions, such as tailored electrolyte supplementation or modification of diuretic regimens to preserve homeostasis. Risk is not just acute; the cumulative burden of fluctuating electrolytes over weeks can sensitize the myocardium and lead to remodeling, further increasing the likelihood of arrhythmia over time (19).

Conclusion

Electrolyte imbalances significantly influence cardiac electrophysiology and can precipitate life-threatening arrhythmias if unrecognized. Accurate diagnosis and timely correction are essential to stabilize rhythm and prevent complications. Risk evaluation must account for individual variability, comorbidities, and treatment responses. Integrated monitoring and tailored management strategies remain central to improving outcomes.

Disclosure

Conflict of interest

There is no conflict of interest.

Funding

No funding.

Ethical consideration

Non applicable.

Data availability

All data are available within the manuscript.

Author contribution

All authors contributed to conceptualizing, data drafting, collection and final writing of the manuscript.

References

1. Weiss JN, Qu Z, Shivkumar K. Electrophysiology of hypokalemia and hyperkalemia. *Circulation: arrhythmia and electrophysiology*. 2017;10(3):e004667.
2. Surawicz B, Knilans T. Chou's electrocardiography in clinical practice: adult and pediatric. Elsevier Health Sciences; 2008.
3. Roden DM. Drug-induced prolongation of the QT interval. *New England Journal of Medicine*. 2004;350(10):1013-22.
4. Nanji AA. Drug-induced electrolyte disorders. *Drug intelligence & clinical pharmacy*. 1983;17(3):175-85.

5. Macdonald JE, Struthers AD. What is the optimal serum potassium level in cardiovascular patients? *Journal of the American College of Cardiology*. 2004;43(2):155-61.

6. Kovesdy CP. Updates in hyperkalemia: outcomes and therapeutic strategies. *Reviews in Endocrine and Metabolic Disorders*. 2017;18(1):41-7.

7. Hunter RW, Bailey MA. Hyperkalemia: pathophysiology, risk factors and consequences. *Nephrology Dialysis Transplantation*. 2019;34(Supplement_3):iii2-iii11.

8. Acker CG, Johnson JP, Palevsky PM, Greenberg A. Hyperkalemia in hospitalized patients: causes, adequacy of treatment, and results of an attempt to improve physician compliance with published therapy guidelines. *Archives of internal medicine*. 1998;158(8):917-24.

9. Altura BM, Altura BT. Role of magnesium in patho-physiological processes and the clinical utility of magnesium ion selective electrodes. *Scandinavian Journal of Clinical and Laboratory Investigation*. 1996;56(sup224):211-34.

10. Whang R, Ryder KW. Frequency of hypomagnesemia and hypermagnesemia: requested vs routine. *Jama*. 1990;263(22):3063-4.

11. Adrogue HJ, Madias NE. Hypernatremia. *New England Journal of Medicine*. 2000;342(20):1493-9.

12. Parham WA, Mehdirad AA, Biermann KM, Fredman CS. Hyperkalemia revisited. *Texas Heart Institute Journal*. 2006;33(1):40.

13. Hamrahan SM, Falkner B. Hypertension in chronic kidney disease. *Adv Exp Med Biol*. 2017;956(956):307-25.

14. RYZEN E, WAGERS PW, SINGER FR, RUDE RK. Magnesium deficiency in a medical ICU population. *Critical care medicine*. 1985;13(1):19-21.

15. Wrenn KD, Slovis CM, Slovis BS. The ability of physicians to predict hyperkalemia from the ECG. *Annals of emergency medicine*. 1991;20(11):1229-32.

16. Sterns RH, Hix JK, Silver SM. Management of hyponatremia in the ICU. *Chest*. 2013;144(2):672-9.

17. Ayus JC, Krothapalli RK, Arief AI. Treatment of symptomatic hyponatremia and its relation to brain damage. *New England Journal of Medicine*. 1987;317(19):1190-5.

18. Montague BT, Ouellette JR, Buller GK. Retrospective review of the frequency of ECG changes in hyperkalemia. *Clinical Journal of the American Society of Nephrology*. 2008;3(2):324-30.

19. Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. *Journal of the American College of Cardiology*. 2018;72(14):e91-e220.